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Acoustic scattering by density gradients 
By A. J. KEMPTON 

Engineering Department, University of Cambridge? 

(Reoeived 11 November 1976 and in revised form 14 May 1977) 

In  this paper we solve some model problems by the method of matched expansions 
and deduce some features of Green’s function using the reciprocal theorem to demon- 
strate that scattering by density gradients can enhance the radiation efficiency of 
quadrupoles to that of dipoles. If a fluid is subjected to body forces close to and on both 
sides of a density interface, then the source system degenerates to a quadrupole only if 
the components of the forces perpendicular to the interface are equal in magnitude and 
opposite in direction and, additionally, the components of the forces per unit fluid 
density parallel to the interface are equal but opposite. In  other cases dipole rather 
than quadrupole radiation efficiency is achieved. But we also show that, despite 
published assertions to the contrary, the radiation efficiency is not enhanced further 
and there is no monopole contribution to the radiated sound. 

1. Introduction 
Lighthill’s (1952, 1954) theory of aerodynamic sound generation underpredicts the 

noise of aeroengines at low jet Mach numbers. The radiated sound is dominated by the 
contribution from Lighthill’s quadrupoles at high Mach numbers, but as the jet 
velocity is reduced other sources of sound evidently become important. These sources, 
which radiate sound that increases with the jet velocity slowly compared with quad- 
rupole noise, might result from scattering mechanisms that enhance the radiation 
efficiency of Lighthill’s quadrupoles, or they might be entirely new dipole or monopole 
sources. 

Solid bodies can act as such efficient scatterers of sound since the unsteady forces 
induced on the fluid constitute acoustic dipoles. Inhomogeneities in density behave 
similarly; the coupling of entropy and acoustic waves in flows through nozzles and 
turbines has been modelled by Candel (1972) and Cumpsty & Marble (1974), and 
Ffowcs Williams & Howe (1975) have shown that, when a ‘pellet’ or ‘slug’ of fluid of 
different density is accelerated with the mean jet flow through a nozzle contraction, the 
unsteady force radiates sound with dipole efficiency. Ffowcs Williams (1975) maintains 
further that in these situations the scattering can be even more effective and that 
monopole sources as well as dipoles can be present; he argues that a ‘monopole splash’ 
occurs when rigid bodies traverse density gradients, and it has been suggested that a 
similar monopole will occur owing to variations in the speed of sound. We shall show, 
however, that no such monopoles exist. 

Inhomogeneities in density are also thought to be important in scattering the noise 
of hot low-speed jets. Hoch et al. (1973), Tanna, Fisher & Dean (1973) and Tanna, 
Dean & Fisher (1975) have determined the effect that the temperature of a model jet 
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FIUURE 1. Sphere vibrating at the interface of two fluids. 

has on the radiated sound. They found that at  high speeds a hot jet was quieter than 
a cold jet, but at low speeds it was noisier. As the temperature of the jet is increased, 
the density is reduced and with it the quadrupole strength, so it is not surprising that 
the noise at high speeds is reduced. But at low speeds the noise is increased; this in- 
crease is believed to be because scattering by density gradients enhances the radiation 
efficiency of the quadrupoles. 

Green’s function techniques (Tester & Morfey 1976) and reformulations of Lighthill’s 
acoustic analogy (Morfey 1973; Ffowcs Williams 1974; Howe 1975) show that dipole 
radiation results from such scattering of quadrupole near fields by density gradients, 
and Tester & Morfey (1976) and Morfey & Szewczyk (1977) have obtained empirical 
correlations of hot-jet noise data assuming just quadrupole and dipole radiation. Mani 
(1976), on the other hand, claimed that the radiation efficiency could be increased still 
further to that of monopoles, and both he and Lush & Fisher (1973) have obtained a 
good collapse of the data assuming that monopoles are also present. We shall show, 
however, that there are no such monopoles and that Mani was mistaken to include 
them in his plug-flow modelling of the jet. (Of course the absence of monopoles does 
not affect the good agreement with experiment obtained by Mani at  high speeds.) 
Lush & Fisher (1973) and others have already shown there is no such monopole if the 
inhomogeneity in density is compact on a wavelength scale. We shall show this is still 
true if the region where the density varies is extensive. 

We show in this paper that scattering by density gradients does not induce a mono- 
pole source. We examine some model problems to illustrate that no ‘monopole splash’ 
occurs though density gradients can scatter the near field of quadrupoles and enhance 
their radiation efficiency to that of dipoles. We show that the field of amonopole located 
close to a discontinuity in the fluid density or speed of sound is the same regardless of 
whether the monopole is just above or just below the interface, and that similar 
conclusions hold for a dipole with axis parallel to the discontinuity but not for one with 
axis perpendicular to it. We also examine Mani’s arguments for the existence of 
monopoles in the mixing of turbulent jets and show them to be in error. 
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FIGURE 2. The direct, reflected and transmitted fields from a dipole at a density interface. 
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2. Dipole sources near a density interface 
We shall demonstrate that a compact sphere vibrating without deformation at  a 

density interface constitutes an acoustic dipole. We consider a sphere of radius a which 
vibrates such that its centre is located on the y axis at  a distance to cos ot above the 
origin; the amplitude of the oscillation 5, is small enough for the governing equation 
and boundary conditions to be linearized. We assume that the density of the fluid is 
po for y > 0 and p1 for y < 0, but in order to model the effect of density gradients alone 
we assume, like Pfowcs Williams (1975), that the speed of sound c is uniform. The 
geometry is illustrated in figure 1. 

It is surprisingly easy to determine the radiated sound if we solve for the velocity 
potential $ rather than the pressure p .  The velocity potential satisfies the wave equa- 
tion 

the radiation condition, and the boundary conditions (i) normal velocity specified on 
the sphere, 

(ii) pressure continucus across the density interface, 

a 2 $ / a t 2 - m 2 $  = o, (1) 

a#/aR = - og, sin ot sin 0 on R = a, (2) 

(3) Po a$(Y = o + p t  = P1 a$(Y = o-)/at, 
and (iii) normal velocity continuous across the interface, 

a$(y = 0+)/8y = a$(y = o - p y .  
The solution is simply 

x7 F L M  a3 
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where Re denotes the real part. (The boundary condition of continuity of pressure is 
automatically satisfied since qi vanishes on y = 0.) We find that the far-field fluctuating 
pressure is 

iw35, a3p0 sin 0 exp {iot - 

iw35, a3p1 sin 0 exp (iwt - iw(R - u)/c} 

The sphere acts as a dipole source of sound; there is no ‘monopole splash’. 
The reflexion properties of a density interface suggest that this result is also true for 

asymmetric vibrating bodies (see figure 2). There are contributions to the radiated 
sound from one monopole above and from another of opposite strength below the 
interface. The pressure field radiated in the upper half-plane directly by the first 
monopole is proportional to po, while the fields reflected by and transmitted through 
the interface are proportional to 9 p o  and (1 + 9 ) p o  respectively. The reflexion co- 
efficient W is given by 9 = (pl -po ) / (p l  +po). The second monopole radiates directly in 
the lower half-plane a pressure field proportional to -pl ,  and because the reflexion 
coefficient now has opposite sign, the reflected and transmitted fields are proportional 
to Wpl and - (1 - 9) p1 respectively. Since po + 9 p o  - (1 - 9) p1 = 0, the monopole 
contribution to the total field vanishes (see figure 2). 

Ffowcs Williams’ (1975) result is in error because he neglects what is actually an 
important contribution from the isotropic quadrupole V 2 ( p  - c2p), equivalent to a 
monopole c - ~  a2(p - c2p)/at2. The contribution from the term c - ~  a2p/at2 is smaller by a 
factor of order M2, the mean-flow Mach number squared, than the contribution from 
the term - Pp/at2, and so we neglect it. Thus in Ffowcs Williams’ notation (pa, /, ua 
and u p  are the densities and velocities of the a and p fluids, Da/Dt is the time 
derivative following ‘a’ particles, and p is the concentration of ‘ p ’  fluid), the 
monopole source has strength not simply 

but 

where Q = - paDa In (1 - ,5)/Dt and the integration is to be performed over the source 
region. We can then assume that the ‘a’ fluid is incompressible in the source region, 

Dapa/Dt = 0, 
and use ‘,8’ mass conservation, 

and 

to determine the monopole source strength as 
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FIGURE 3. Spheres vibrating with velocities parallel to a density interface. 

There will be a compensatory back-flow of the ‘a’ fluid as the ‘B ’  particles move 
through, with 

{(1-/3)u?+/3uf) = 0 

for incompressible flow. This results in the monopole source strength (7) vanishing. So 
the inclusion of the contribution from the isotropic quadrupole ensures that sound is 
radiated with the efficiency only of dipoles; not all quadrupoles are negligible in 
comparison with monopoles. 

3. Quadrupole sources near a density interface 
We now show that two compact vibrating spheres situated close to and on opposite 

sides of a density interface constitute a quadrupole source if their velocities, equal in 
magnitude and opposite in direction, are parallel to the interface. The forces on the 
spheres are different in magnitude, but the forces per unit fluid density are equal. The 
spheres both have radius a, and their centres are located at  distances hb above and 
below the x axis and to cos wt to the right and left of they axis; the distance between the 
spheres is much smaller than a wavelength, wb/c < 1, and the amplitude of the oscilla- 
tion to is small enough for the governing equation and boundary conditions to be 
linearized. (Ro, Oo, $), (& O,, $) and (R, O,+) are spherical polar co-ordinates with 
origins respectively at  the centres of the upper and lower spheres and a t  the midpoint 
between the spheres (see figure 3). 

Since the source region is compact on a wavelength scale, we determine the source 
structure by assuming that the flow is incompressible. The velocity potential $ 
satisfies 

VZ$ = 0 ( 8 )  
17-2 
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with boundary conditions (i) normal velocity specified on the spheres, 

a+/aRo = - wEo sin ot cos 0, sin @ on R, = a, 
a#/aR, = wE,sin wt cos 8, sin @ on R, = a, 

(ii) pressure continuous across the interface, 

Po a+@ = o + p  = P1 = O-)/& ( 10) 

(11)  

We find that the solution for the velocity potential satisfies a+/at = 0 on y = 0, so that 
the requirement of continuity of pressure (ii) is automatically satisfied; i.e. there is no 
field scattered by the density interface. 

We can represent the flow field as the field of an infinite number of doublets which lie 
onthe line joining the centres of the spheres and which have their axes in the z direction. 
If we neglect the scattering by one sphere of the field from the other, just two doublets 
of opposite sign suffice. But when scattering is incorporated an infinite series of image 
doublets and line doublets is needed. To show this we use Hicks’ (1880) result for the 
change in the field of a doublet when a rigid stationary sphere is introduced (see also 
Lamb 1932, $998 and 99). If the line joining the doublet to the sphere’s centre is per- 
pendicular to the doublet’s axis, the image system is a second doublet at the inverse 
point with a trail of line doublets behind it (see figure 4). So, to a first approximation, a 

and (iii) normal velocity continuous across the interface, 

a+(y = o+)/ay = a+(y = o-)/ay. 
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FIGURE 5. Spheres vibrating with velocities perpendicular to a density interface. 

second stationary sphere augments the field of a vibrating sphere by introducing an 
image doublet and a trail of line doublets. But this scattered field is itself scattered by 
the first sphere, and so the interaction of the two spheres results in an infinite series of 
image doublets. When both spheres are vibrating, the doublets occur in pairs at  equal 
distances above and below the origin, and when the spheres have equal but opposite 
velocities, these doublets have equal but opposite strengths. Since the characteristics 
of the flow field are the same for each pair of doublets, we need consider only the field 
radiated directly by the spheres. The scattered field has the same multipole nature but 
is smaller at  large distances by a factor of order a3/b3. So for large R, and R,, 

cos 6, sin @ cos 4 sin @ 
R2, ) (“‘(g)) $ = twgoa3sinwt - 

We can in principle determine the radiated sound by matching on an outgoing 
solution to the wave equation which satisfies the boundary conditions of continuity of 
pressure and displacement across the interface. The detailed calculation of the field 
would be laborious, but it is evident from (12) that sound is radiated only with the 
efficiency of quadrupoles. 

There is a residual dipole, however, if the velocities of the spheres are perpendicular 
to the interface. Then the source degenerates to a quadrupole when the magnitudes of 
the forces on the spheres are equal, rather than their speeds. To demonstrate this we 
assume that the centres of the spheres are located at distances i b  + co cos wt above and 
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+b + (p,/p,) f o  coswt below the origin. The boundary conditions of normal velocity 
specified on the spheres become 

a$/aR, = - ofo sin wt sin 0, on R, = a,) 

The geometry is illustrated in figure 5. 
To ensure that the pressure is continuous across the density interface, we now need 

an additional term in the velocity potential. If we neglect the scattering by one sphere 
of the field from the other, we find that 

The field in y > 0 is the field of a doublet with its axis in the y direction situated a 
distance ab  above the origin and one of opposite sign situated a distance $b below the 
origin. For the field in y c 0 the strengths of the doublets are multiplied by the factor 
po/pl. Scattering by the spheres introduces an infinite series of image doublets which 
lie on the line joining the centres of the spheres and which have their axes in the y 
direction. The doublets occur in pairs at  equal distances above and below the origin, 
with their strengths in the ratio 1 to po/pl. Again the characteristics of the flow field are 
the same for each pair of doublets, so for large R 

-+o[,a?bsinot --+- -- (a' ay2R 2 4 a g ~  b2 a4 I + . . . ) (  l+o($)), y > O ,  (15a) 

- &w(, a3b a 2  i +---+...) b2 a4  i ( l+O($) ) ,  y < 0. (15b) 
2R 2 4 a y 4 R  

' = 

sin wt 
P1 

Sound is again radiated with the efficiency only of quadrupoles. 

4. Sources near gradients in the density and speed of sound 
The results of $0 2 and 3 also hold if the speed of sound differs in the two fluids. We 

use the reciprocal theorem to demonstrate this; it can also be deduced directly from 
the governing equations, or from the work of Tester & Morfey (1976). 

Landau & Lifshitz (1959, p. 288) established a reciprocal theorem for sound waves in 
inhomogeneous media at rest when the fluid density and speed of sound vary. They 
showed that the pressure at  a field point B due to a point volume monopole source at  A 
is equal to the pressure at A due to an identical monopole source at  B. For an observer 
at  A close to a discontinuity in the density and the speed of sound the pressure due to a 
monopole source at B is independent of the precise location of A since pressure is con- 
tinuous across a fluid interface. Application of the reciprocal theorem therefore shows 
that the pressure at B due to a monopole smrce at A is also independent of the precise 
location of A ;  the field is the same regardless of which side of the interface the source is 
located. 

This reciprocal principle also demonstrates that a compact rigid body vibrating in 
any manner does not constitute an acoustic monopole regardless of any variations in 
the mean density or speed of sound, and this result can be generalized immediately to 
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more than one compact rigid body. Here we restrict attention to fluctuations of fre- 
quency w in an ideal fluid, and denote bypA andu,the fluctuatingpressure andvelocity 
field due to small vibrat,ions of a rigid body in an inhomogeneous medium at rest. We 
denote by p ,  and U, the fluctuating pressure and velocity in the reciprocal problem 
when a point source is at  y in the same medium and the rigid body is stationary (see 
figure 6). We shall show that there is no monopole contribution to p ,  by deriving an 
expression for pA(y)  which involves the integral of p ,  over the rigid body and which 
vanishes if differences in retarded times across the rigid body are neglected. 

Both p A  and p ,  satisfy (see Landau 8z Lifshitz 1959, equation 74.2) 

so 

We integrate this equation over a volume that is bounded by S,, the surface of the 
rigid body, by S,, a small sphere that encloses the point y, and by S,, an infinitely 
distant closed surface, and then transform the volume integral into three surface 
integrals to obtain 

At large distances R, the integrand (pA V p ,  -p ,  VpA)/p decays faster than R-2, so the 
integral over S ,  vanishes. Near y the pressure p ,  varies rapidly so there VpB/pB is 
much greater than VpAIpA, and the integral over 8, may be approximated by 

P 
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Furthermore p A  is nearly constant over S,. So in the limit when the radius of S, tends 
to zero, the surface integral over S, is given by 

Finally, the integral over S, is equal to 

since u,. dS vanishes on S,. Substituting these results into (17) we obtain 

variations inpB(x) across S, are solely responsible for the non-vanishing of p, (y ) .  But, 
since pressure is continuous across interfaces in the density and speed of sound, these 
variations occur only because of differences in the retarded time across S,. So the 
vibrating body radiates sound only because of differences in the retarded time across it; 
it does not constitute a monopole source. 

The field of a dipole close to a density interface that is locally perpendicular to the 
dipole axis does depend on the precise location of the dipole, since the normal gradient 
of pressure is not continuous across a density interface. Consequently density gradients 
can scatter the near fields of quadrupoles and enhance the radiation efficiency to that 
of dipoles. 

5. Applications to the noise of hot jets 
We have demonstrated that scattering by a density interface does not induce a 

monopole source. Yet Mani (1976) maintains that monopoles are present when a hot 
jet mixes with its cold surroundings, even in the absence of heat diffusion and viscous 
dissipation. These monopoles arise because of the classification he uses for the source 
terms of Lilley's equation: 

where D/Dt = afat + V, alas, p' and u' are the perturbation pressure and velocity, p and 
Z2 are the mean density and the mean square of the speed of sound, and V,(r) is the 
mean velocity in the x direction. The mean flow is assumed to be axisymmetric ( r  is 
the radial distance in cylindrical polar co-ordinates) and independent of x ,  the dis- 
tance along the jet axis. 
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Mani asserts that a source term of the form 

But we do not find this classification helpful since it does not reflect the efficiency with 
which different sources radiate. We believe that the significant multipole character- 
istics of the source are embodied in the factor that multiplies the mean density, 
p(r)  not p(ro) ,  in the form of Lilley’s equation used by Mani. For a point volume- 
velocity source of strength 6(x - xo) cos wt in the continuity equation 

p-l Dp/Dt + V . u = S(X - x g )  cos at 
appears as 

D D  
p(r )  = - [6(x - xo) cos ot] 

Dt Dt 

in (19); two adjacent sources with strengths 6(x - xo) cos wt and - 6(x - x,, - 1) cos wt 
appear as 

not as 

nor as 

Consequently we agree with Tester & Morfey (1976), who interpret the term 

as a volume-acceleration distribution 

ayu; uj)/axi ax, 

of quadrupole order; the radiation efficiency of these quadrupoles can be enhanced by 
density gradier,ts to that of dipoles. 

Mani next expresses the radiated pressure as 

where Green’s function g satisfies 

9 ( g )  = D [ ~ ( x  - Y) 6(t - 7)]/Dt, 
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and interprets the terms in ag/ayi, ag/ayj and g as being of lower order than the term in 
azg/ayi ayj. But this interpretation does not provide an ordering from which far-field 
estimates of the radiated sound can immediately be deduced. Such an ordering allows 
meaningful comparisons of the radiated sound only if a length scale for the gradient 
operator can be estimated unambiguously. Derivatives with respect to the source’s 
position y can be expressed as derivatives with respect to the observer’s position x 
when g is a function of x - y alone. So then the length scale for the gradient operator is 
given unambiguously by the acoustic wavelength. But in the case considered by Mani 
there is no simple estimate for this length scale. The contributions to the radiated 
sound from the terms involving ag/ayi, aglay, and a2g/8yi ayj are not smaller by factors 
of the order of the mean-flow Mach number than the contribution from the term in g .  
Indeed an alternative manipulation of Lilley’s equation (Tester & Morfey 1976) shows 
that they combine to cancel it to lowest order in the Mach number. 

Finally Mani draws support for the existence of monopoles from his belief that a 
point source radiates a pressure proportional to the local density at the source and that 
this ‘leads to the generation of lower-order singularities when density gradients are 
considered’. But the reciprocal theorem used in $ 4  shows this belief to be unfounded. 

M7e consequently have doubts about the usefulness of Mani’s classification of the 
sources of noise in hot jets; and we believe he is wrong when he employs a different 
modelling of the jet (a plug-flow modelling) with a different definition for the multipole 
nature of the source, but still assumes the existence of monopoles. Consider a compact 
control surface S inside the jet that moves with the mean velocity and encloses a 
volume V containing the monopole source (see figure 7).  The moving monopole, with 
strength of the order of the mean-flow Mach number M ,  requires the mass flux through 
S to scale with M .  But, in a frame of reference moving with the mean flow, the 
continuity equation, 

DplDt = - ~ V . U ,  (21) 
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the equation of state, 

the equation for isentropic flow, 
P = RPT, 

p DslDt = 0, 

and the equation relating the thermodynamic quantities, 

T d s  = c,dT+pd(l /p) ,  (24) 

together with an application of the divergence theorem imply that the mass flux 
through such a surface will scale as M3. For 

and pressure variations in the source region scale as pU2. Here R is the specific gas 
constant, T the temperature, s the specific entropy, c,  the specific heat at constant 
volume, y the ratio of specific heats, and U the mean-flow velocity. Mani’s descrip- 
tion of the sources in his plug-flow modelling of the jet is therefore inappropriate. 
No monopole source is present. 

6. Conclusions 
Experiments on model jets (Hoch et al. 1973; Tanna, Fisher & Dean 1973; Tanna, 

Dean & Fisher 975) show that at  low Mach numbers an increase in the jet tempera- 
ture results in an increase in the radiated sound. Empirical correlations of this ‘excess 
noise’ have been obtained (Lush & Fisher 1973) under the assumptionof theexistence 
of monopole sources in the jet, and it has been suggested that the scattering of qua- 
drupole near fields by density gradients could generate such monopoles, even in an 
ideal fluid. But this is incorrect. No monopole sources are present, though the scat- 
tering can enhance the radiaticn efficiency of the quadrupoles to that of dipoles. 
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